Les nombres de Métal : alchimie mathématique de la transformation

G.HUVENT

22 décembre 2004

On considère pour $n \in \mathbb{N}$, $n \geq 2$ l'équation

$$x^n = x^{n-1} + x^{n-2} + \dots + x + 1$$

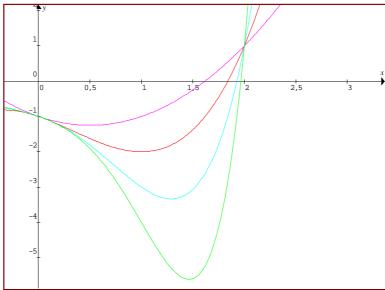
On s'intéresse aux racines positives de cette équation. Lorsque n=2, on retrouve le nombre d'or $\alpha_2=\frac{1}{2}+\frac{\sqrt{5}}{2}$. et pour

n=3, le logiciel Maple donne $\alpha_3=\frac{1}{3}+\frac{\sqrt[3]{19+\sqrt{33}}}{3}+\frac{4}{3\sqrt[3]{19+\sqrt{33}}}$ (le nombre d'argent). Pour $n\geq 2$, on prouvera

l'existence et l'unicité d'une racine positive que l'on appellera alors énième nombre de métal et que l'on notera α_n . On s'intéresse ensuite au comportement de la suite $(\alpha_n)_n$, en particulier quelle est la limite de la suite $(\alpha_n)_{n\in\mathbb{N}}$, peut on déterminer un développement asymptotique de α_n ?

1 Etude expérimentale

Posons $P_n = x^n - (x^{n-1} + x^{n-2} + \dots + x + 1) = \frac{x^{n+1} - 2x^n + 1}{x - 1}$ si $x \neq 1$, et traçons quelques courbes représentatives.

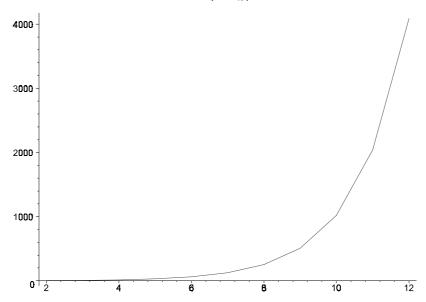


On constate graphiquement l'existence d'une unique solution α_n sur \mathbb{R}_+ , il semble, de plus que la suite est croissante et que

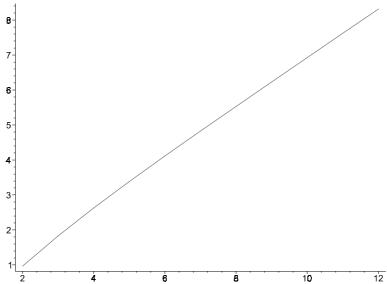
$$\alpha_n \le 2 \text{ et } \alpha_n \xrightarrow[n \to +\infty]{} 2$$

Avec un logiciel de calcul numérique (Maple ou autre), on peut calculer des valeurs approchées de α_n pour $n \in \{2, \cdots, 12\}$. Puisque α_n semble tendre vers 2, il semble logique de s'intéresser à $\beta_n = 2 - \alpha_n$ qui tend vers 0 et il peut

être intéressant de tracer la ligne polygônale de sommet $\left(n, \frac{1}{\beta_n}\right)$. On obtient le graphique suivant



La croissance semble être exponentielle, il est donc judicieux de tracer le même graphique en échelle logarithmique. On obtient alors



Ce qui ressemble fortement à une croissance linéaire. Il semble donc que β_n soit de la forme β^n . Le calcul approché de $\frac{\beta_{12}}{\beta_{11}}$ donne $\beta \approx 0,499\cdots$ On peut donc conjecturer que $\alpha_n \approx 2-\frac{1}{2^n}$.

Passons maintenant à l'étude théorique

2 Existence d'une unique solution

On commence donc par prouver l'existence et l'unicité d'une racine positive α_n (strictement positive même). Lorsque n=2, on retrouve le nombre d'or.

Pour cela, on remarque que 0 n'est pas solution et on utilise la transformation suivante

$$x^{n} = x^{n-1} + x^{n-2} + \dots + x + 1 \iff 1 = \frac{1}{x^{n}} + \frac{1}{x^{n-1}} + \dots + \frac{1}{x}$$

La fonction

$$f\left(x\right) = \sum_{k=1}^{n} \frac{1}{x^k}$$

est strictement décroissante sur $]0, +\infty[$ (en tant que somme de fonctions strictement décroissantes) et elle est continue. Elle réalise donc une bijection de $]0, +\infty[$ sur lui même (car $\lim_{0^+} f = +\infty$ et $\lim_{+\infty} f = 0^+$).

Il existe donc une unique racine α_n .

Pour encadrer cette racine, on revient sur l'expression de P_n . Puisque $P_n(2) = 2^n - \sum_{k=0}^{n-1} 2^k = 1$ et $P_n(1) = 1 - n$, cette racine est comprise entre 1 et 2.

3 Une première valeur approchée via Newton

On dispose donc maintenant de plusieurs formulations équivalentes de notre problème

Le énième nombre de métal est l'unique réel $x \in]1,2[$ tel que

$$x^{n} = x^{n-1} + x^{n-2} + \dots + x + 1$$

$$\frac{x^{n+1} - 2x^{n} + 1}{x - 1} = 0$$

$$x^{n+1} - 2x^{n} + 1 = x^{n} (x - 2) + 1 = 0 \text{ car } x \neq 1$$

$$x^{n} (2 - x) = 1$$

$$2 - x = \frac{1}{x^{n}}$$

$$\frac{1}{x^{n}} + \frac{1}{x^{n-1}} + \dots + \frac{1}{x} = 1$$

Si on applique la méthode de newton en partant de x = 2, on obtient une première approximation de la racine. La question est alors la suivante : quelle formulation doit-on utiliser?

On va donc choisir une représentation du problème sous la forme

$$\varphi(x) = 0$$

et on prend comme première approximation de α_n :

$$\alpha_n = 2 - \frac{\varphi(2)}{\varphi'(2)}$$

3.1 Avec $\varphi_1(x) = x^{n+1} - 2x^n + 1 = 0$

On obtient alors

$$\alpha_n \approx 2 - \frac{1}{2^n}$$

Cette première approximation est extrément simple, mais est-ce une valeur par défaut ou par excès? Il est très facile de répondre à cette question, en effet α_n est l'unique racine dans]1,2[de la fonction g définie par

$$g\left(x\right) = \frac{1}{x^n} - (2 - x)$$

Une étude rapide de g fournit les variations suivantes

\boldsymbol{x}	1		$n+\sqrt[n]{n}$		2
$g\prime$		_	0	+	
	0				$\frac{1}{2^n}$
g				/	_
			< 0		

puisque
$$g\left(2-\frac{1}{2^n}\right)=\frac{1}{\left(2-\frac{1}{2^n}\right)^n}-\frac{1}{2^n}\geq 0$$
 car $2-\frac{1}{2^n}<2$ et $x\to \frac{1}{x^n}$ est décroissante, on peut affirmer que

$$\alpha_n \le 2 - \frac{1}{2^n}$$

3.2 Avec
$$\varphi_2(x) = \frac{x^{n+1} - 2x^n + 1}{x - 1}$$

On obtient alors comme valeur approchée

$$\alpha_n \approx 2 - \frac{1}{2^n - 1}$$

On peut numériquement constater que cette valeur approchée l'est encore par excès. Le prouver semble plus difficile, mais en mathématiques, rien n'est jamais perdu...

3.3 Avec $\varphi_3(x) = \frac{1}{x^n} + x - 2$

On obtient dans ce cas

$$\alpha_n = 2 - \frac{1}{2^n - \frac{n}{2}}$$

ce qui est encore une meilleure approximation de α_n (on verra pourquoi)!

Pour prouver que l'on obtient bien une valeur par excès, on utilise la convexité de φ . En effet dans ce cas

$$\varphi_3''(x) = \frac{n(n+1)}{x^{n+2}} > 0 \text{ sur }]1,2[$$

La courbe est donc strictement au dessus de ces tangentes¹. En particulier φ_3 est au dessus de sa tangente en x=2.

Donc
$$\varphi_3\left(2-\frac{1}{2^n-\frac{n}{2}}\right)\geq 0$$
 (la tangente en 2 coupe Ox en $2-\frac{1}{2^n-\frac{n}{2}}$).

On en déduit que

$$\alpha_n \le 2 - \frac{1}{2^n - \frac{n}{2}} \le 2 - \frac{1}{2^n - 1} \le 2 - \frac{1}{2^n}$$

Tout cela est donc très intéressant, mais quid des valeurs par défaut?

4 Monotonie de la suite $(\alpha_n)_{n\in\mathbb{N}}$

On peut commencer par étudier la monotonie de $(\alpha_n)_n$. On sait que

$$\alpha_n^n (\alpha_n - 2) = -1$$

donc

$$P_{n+1}(\alpha_n) = \frac{\alpha_n^{n+1}(\alpha_n - 2) + 1}{\alpha_n - 1} = \frac{1 - \alpha_n}{\alpha_n - 1} = -1 < 0$$

voir avec le polynome

On en déduit que

$$\alpha_n < \alpha_{n+1}$$

La suite $(\alpha_n)_n$ est donc strictement croissante (et majorée donc converge).

$$y = f'(u)(x - u) + f(u)$$

la fonction g(x) = f(x) - (f'(u)(x - u) + f(u)) est dérivable deux fois de dérivée seconde égale à f'', donc g' est strictement croissante. Puisque g'(u) = 0, on a les variations de g et son signe (qui est > 0 sauf en u).

¹Cette propriété se démontre facilement en classe de Terminale. En effet soit f dérivable deux fois sur l'intervalle I et telle que f''(x) > 0 sur I. Soit u ∈ I, l'équation de la tangente en u est

5 Un minorant grossier de α_n , calcul de la limite

On va établir la convergence de $(\alpha_n)_{n\geq 2}$ vers 2, pour cela on calcule $g\left(2-\frac{1}{n}\right)=\frac{1}{\left(2-\frac{1}{n}\right)^n}-\frac{1}{n}$ (voir question

3.1 pour la def de g).
dont on devine qu'il est négatif pour n assez grand. Comme l'infini est loin, on va montrer que c'est vrai pour $n \ge 2$. Ce
la revient à prouver que

$$n < \left(2 - \frac{1}{n}\right)^n \Longleftrightarrow n^{\frac{1}{n}} < 2 - \frac{1}{n} \Longleftrightarrow \frac{\ln n}{n} < \ln\left(2 - \frac{1}{n}\right)$$

Une étude rapide de $x \to \frac{\ln x}{x}$ permet d'établir que

$$\forall x \ge 2, \ \frac{\ln x}{x} \le \frac{1}{e}$$

puisque $x \to \ln\left(2 - \frac{1}{x}\right)$ est décroissante, on a

$$\forall n \ge 2, \ \ln \frac{3}{2} = \ln \left(2 - \frac{1}{2}\right) \le \ln \left(2 - \frac{1}{n}\right)$$

il suffit de constater que

$$\frac{1}{e} < \ln \frac{3}{2}$$

pour conclure que

$$g\left(2-\frac{1}{n}\right) \leq 0 \Longrightarrow 2-\frac{1}{n} \leq \alpha_n$$

On en déduit que

$$\alpha_n \xrightarrow[n \to +\infty]{} 2$$

Avant de chercher un minorant plus fin de α_n , on va déterminer un équivalent de β_n si $\alpha_n = 2 - \beta_n$.

6 A la recherche d'un équivalent de $\beta_n = 2 - \alpha_n$

On pose $\alpha_n = 2 - \beta_n$, on sait que α_n vérifie $g(\alpha_n)$ i.e.

$$\beta_n = 2 - \alpha_n = \frac{1}{\alpha_n^n}$$

puisque

$$\alpha_n \xrightarrow[n \to +\infty]{} 2$$

On devine que $\alpha_n^n \sim 2^n$, mais cela n'est malheureusement pas évident². On doit donc prouver que

$$\frac{\alpha_n^2}{2^n} \xrightarrow[n \to +\infty]{} 1$$

Or on sait que

$$2 - \frac{1}{n} \le \alpha_n \le 2 - \frac{1}{2^n} \Longrightarrow \left(1 - \frac{1}{2n}\right)^n \le \left(\frac{\alpha_n}{2}\right)^n \le \left(1 - \frac{1}{2^{n+1}}\right)^n$$

² Par exemple si $u_n = 2 + \frac{1}{n}$, on a $u_n \sim 2$ mais $\frac{u_n^n}{2^n} = \exp\left(n\ln\left(1 + \frac{1}{2n}\right)\right) \xrightarrow[n \to +\infty]{} \sqrt{e}$ car $n\ln\left(1 + \frac{1}{2n}\right) \xrightarrow[n \to +\infty]{} \frac{1}{2}$.

Si le terme $\left(1-\frac{1}{2^{n+1}}\right)^n$ converge bien vers 1, en revanche $\left(1-\frac{1}{2n}\right)^n\xrightarrow[n\to+\infty]{}\frac{1}{\sqrt{e}}$. L'estimation inférieure de α_n est insuffisante. On va donc l'améliorer. Pour s'en sortir, il suffit de remplacer le $\frac{1}{n}$ par $\frac{1}{n^2}$ ou par toute puissance de $\frac{1}{n}$ supérieure à 1. On considère donc $g\left(2-\frac{1}{n^2}\right)$ dont on veut montrer qu'il est négatif. Cela revient à prouver que, pour n assez grand

$$\frac{2\ln n}{n} < \ln\left(2 - \frac{1}{n^2}\right)$$

ce qui est une évidence (regarder le comportement à l'infini, ou bien prouver que c'est vrai pour $n \ge 5$). On a donc pour n assez grand

$$\left(1-\frac{1}{n^2}\right)^n \leq \left(\frac{\alpha_n}{2}\right)^n \leq \left(1-\frac{1}{2^{n+1}}\right)^n$$

le théorème de gendarmes permet d'affirmer que

$$\alpha_n^n \sim 2^n$$

puis

$$\beta_n = \frac{1}{\alpha_n^n} \sim \frac{1}{2^n}$$

7 Un minorant fin de α_n

7.1 Première méthode

On va estimer $P_n\left(2-\frac{1}{2^{n-1}}\right)$ dont le signe est celui de $\left(2-\frac{1}{2^{n-1}}\right)^n \times \left(-\frac{1}{2^{n-1}}\right) + 1 = 1 - 2\left(1-\frac{1}{2^n}\right)^n$. On va montrer que cette quantité est négative, cela revient à prouver que

$$\forall n \ge 2, \, \frac{1}{2} \le \left(1 - \frac{1}{2^n}\right)^n$$

Pour cela, on va utiliser le binôme de Newton (sacré Newton!). On a, pour $n \geq 2$

$$\left(1 - \frac{1}{2^n}\right)^n = 1 - \frac{n}{2^n} + \sum_{k=2}^n (-1)^k \frac{\binom{n}{k}}{2^{nk}} \ge 1 - \frac{n}{2^n} - \sum_{k=2}^n \frac{\binom{n}{k}}{2^{nk}}$$

$$\ge 1 - \frac{n}{2^n} - \frac{1}{2^{2n}} \sum_{k=2}^n \binom{n}{k}$$

$$\ge 1 - \frac{n}{2^n} - \frac{1}{2^{2n}} \sum_{k=0}^n \binom{n}{k} = 1 - \frac{n+1}{2^n} \operatorname{car} \sum_{k=0}^n \binom{n}{k} = 2^n$$

Il suffit donc de prouver que

$$1 - \frac{n+1}{2^n} \ge \frac{1}{2} \Longleftrightarrow \frac{n+1}{2^{n-1}} < 1$$

Cette inégalité se prouve par récurrence pour $n \geq 3$ (elle est fausse pour n = 2). On a donc, pour $n \geq 3$ (en fait c'est encore vrai pour n = 2)

$$\alpha_{n-1} \le 2 - \frac{1}{2^{n-1}} \le \alpha_n \le 2 - \frac{1}{2^n}$$

En conclusion, $2 - \frac{1}{2^n}$ est une valeur approchée de α_n à $\frac{1}{2^{n-1}} - \frac{1}{2^n} = \frac{1}{2^n}$. En fait puisque $2 - \frac{1}{2^{n-1}} \le \alpha_n \le 2 - \frac{1}{2^n}$, une meilleure approximation est

$$\frac{1}{2}\left(2 - \frac{1}{2^n} + 2 - \frac{1}{2^{n-1}}\right) = 2 - \frac{3}{2^{n+1}}$$

l'erreur commise est alors au plus de $\frac{1}{2^{n+1}}$. Par exemple pour n=2, $\alpha_n=\frac{1+\sqrt{5}}{2}=1.6180339\cdots$ et $2-\frac{3}{2^3}=1,625$. L'erreur commise est de $0,006966\cdots$ ce qui est vraiment peu. Pour n=5, Maple donne $\alpha_5=1,9659482\cdots$ et $2-\frac{3}{2^{5+1}}=1,953125$, l'erreur commise est de $0,12823\cdots$ alors que $\frac{1}{2^6}=.0,15625$.

7.2 Seconde méthode

On utilise le fait que α_n est l'unique racine positive de $1 = \frac{1}{x} + \dots + \frac{1}{x^n}$, en posant $y = \frac{1}{x}$ on est ramené à considérer l'équation $R_n(y) = y + y^2 + \dots + y^n - 1 = 0$ dont l'unique racine positive est alors $\frac{1}{\alpha_n}$. On va calculer alors $R_n\left(\frac{1}{2} + \frac{1}{2^n}\right)$ et prouver sa positivité (car $R_n\left(\frac{1}{2}\right) < 0$ et $R_n(1) > 0$), cela prouver que $\frac{1}{2} + \frac{1}{2^n} \ge \frac{1}{\alpha_n}$. On va utiliser le binôme de Newton, en effet

$$\left(\frac{1}{2} + \frac{1}{2^n}\right) + \left(\frac{1}{2} + \frac{1}{2^n}\right)^2 + \dots + \left(\frac{1}{2} + \frac{1}{2^n}\right)^n > \left(\frac{1}{2} + \frac{1}{2^n}\right) + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n = 1$$

On a donc

$$\frac{1}{2} + \frac{1}{2^n} \ge \frac{1}{\alpha_n} \Longleftrightarrow \frac{1}{\frac{1}{2} + \frac{1}{2^n}} \le \alpha_n$$

Or
$$\frac{1}{\frac{1}{2} + \frac{1}{2^n}} = 2 - \frac{2}{2^{n-1} - 1}$$
 d'où la minoration

$$2 - \frac{2}{2^{n-1} - 1} \le \alpha_n$$

La dernière minoration est un peu moins fine.

8 Synthèse des résultats

On peut simplifier la démarche présentée et procéder ainsi pour l'étude des nombres de métal. Après avoir prouvé l'unicité de la récine $\alpha_n \leq 2$, on montre que $2 - \frac{2}{2^{n-1} - 1} \leq \alpha_n$ comme on vient de le faire. On en déduit que $\alpha_n \xrightarrow[n \to +\infty]{} 2$, puis que $\frac{\alpha_n^n}{2^n} \xrightarrow[n \to +\infty]{} 1$. Ces résultats donnent la convergence vers 2 et l'équivalent $2 - \alpha_n \sim \frac{1}{2^n}$.

9 Vers le développement asymptotique de α_n

Si l'on reprend un peu notre étude, on réalise que l'on a également une meilleure approximation de α_n , à savoir $\alpha_n \approx 2 - \frac{1}{2^n - \frac{n}{2}}$ (cf 3.3).

9.1 Etude numérique

Observons numériquement, cela donne pour $n=5,\ 2-\frac{1}{2^{10}-\frac{5}{2}}=1.966101\cdots$ alors que $\alpha_5=1,9659482$. L'erreur est alors de l'ordre de $0,0001534\cdots$.

Numériquement, $2 - \frac{1}{2^n - \frac{n}{2}}$ semble être une excellente approximation. Si on en fait un développement asymptotique, on obtient

$$2 - \frac{1}{2^n - \frac{n}{2}} = 2 - \frac{1}{2^n} \left(\frac{1}{1 - \frac{n}{2^{n+1}}} \right)$$
$$= 2 - \frac{1}{2^n} \left(1 - \frac{n}{2^{n+1}} + o\left(\frac{n}{2^{n+1}}\right) \right)$$
$$= 2 - \frac{1}{2^n} - \frac{n}{2^{2n+1}} + o\left(\frac{n}{2^{2n+1}}\right)$$

ce qui incite à considérer l'approximation suivante

$$\alpha_n \approx 2 - \frac{1}{2^n} - \frac{n}{2^{2n+1}}$$

On va maintenant prouver que l'on obtient bien les premiers termes deu développement asymptotique de α_n (preuve que la méthode de Newton est réellement fabuleuse...)

9.2 Etude théorique

On sait que α_n est solution de l'équation $\frac{1}{x^n} = 2 - x$, puisque $\alpha_n \neq 2$, c'est aussi une solution de

$$x = (2 - x)^{-\frac{1}{n}}$$

Posons

$$\alpha_n = 2 - \frac{1}{2^n} - \frac{\gamma_n}{2^n} \text{ avec } \gamma_n \xrightarrow[n \to +\infty]{} 0$$

alors

$$\alpha_n = (2 - \alpha_n)^{-\frac{1}{n}} = \left(\frac{1}{2^n} (1 + \gamma_n)\right)^{-\frac{1}{n}} = 2 (1 + \gamma_n)^{-\frac{1}{n}}$$

d'où

$$\ln\left(\frac{\alpha_n}{2}\right) = -\frac{1}{n}\ln\left(1+\gamma_n\right)$$
 or $\frac{\alpha_n}{2} \xrightarrow[n \to +\infty]{} 1$ donc $\ln\left(\frac{\alpha_n}{2}\right) \sim \frac{\alpha_n}{2} - 1 = -\frac{1}{2^{n+1}} - \frac{\gamma_n}{2^{n+1}} \sim -\frac{1}{2^{n+1}}$ et $-\frac{1}{n}\ln\left(1+\gamma_n\right) \sim -\frac{\gamma_n}{n}$. En conclusion
$$-\frac{1}{2^{n+1}} \sim -\frac{\gamma_n}{n}$$

soit

$$\gamma_n \sim \frac{n}{2^{n+1}}$$

et

$$\alpha_n = 2 - \frac{1}{2^n} - \frac{n}{2^{2n+1}} + o\left(\frac{n}{2^{2n+1}}\right)$$

9.3 Pour un terme de plus

Posons
$$\alpha_n = 2 - \frac{1}{2^n} - \frac{n}{2^{2n+1}} - \frac{\varepsilon_n}{2^{2n+1}}$$
 avec $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$. Alors
$$\ln\left(1 - \frac{1}{2^{n+1}} - \frac{n}{2^{2n+2}} - \frac{\varepsilon_n}{2^{2n+2}}\right) = \ln\left(\frac{\alpha_n}{2}\right) = -\frac{1}{n}\ln\left(1 + \frac{n}{2^{n+1}} + \frac{\varepsilon_n}{2^{n+1}}\right)$$

or

$$\ln\left(1 - \frac{1}{2^{n+1}} - \frac{n}{2^{2n+2}} - \frac{\varepsilon_n}{2^{2n+2}}\right) = \left(-\frac{1}{2^{n+1}} - \frac{n}{2^{2n+2}}\right) - \frac{1}{2}\frac{1}{2^{2n+2}} + o\left(\frac{1}{2^{2n}}\right)$$

$$= -\frac{1}{2^{n+1}} - \frac{2n+1}{2^{2n+3}} + o\left(\frac{1}{2^{2n}}\right)$$

$$-\frac{1}{n}\ln\left(1 + \frac{n}{2^{n+1}} + \frac{\varepsilon_n}{2^{n+1}}\right) = -\frac{1}{n}\left(\left(\frac{n}{2^{n+1}} + \frac{\varepsilon_n}{2^{n+1}}\right) - \frac{1}{2}\frac{n^2}{2^{2n+2}}\right) + o\left(\frac{1}{2^{2n}}\right)$$
$$= -\frac{1}{2^{n+1}} - \frac{\varepsilon_n}{n2^{n+1}} + \frac{n}{2^{2n+3}} + o\left(\frac{1}{2^{2n}}\right)$$

on en déduit que

$$\varepsilon_n \sim \frac{n(3n+1)}{2^{n+2}} \sim \frac{3n^2}{2^{n+2}}$$

et enfin

$$\alpha_n = 2 - \frac{1}{2^n} - \frac{1}{2} \frac{n}{2^{2n}} - \frac{3}{8} \frac{n^2}{2^{3n}} + o\left(\frac{1}{2^{3n}}\right)$$

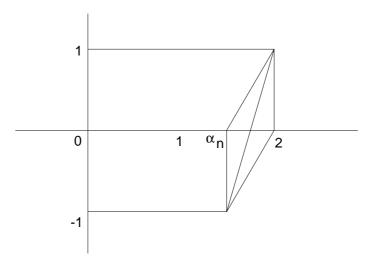
10 Mise en oeuvre de la méthode de Newton

On a vu que $P_{n+1}(\alpha_n) = -1$, ainsi

$$P_{n+1}(\alpha_n) = -1, P_{n+1}(2) = 1$$

$$\alpha_n \le \alpha_{n+1} \le 2$$

Si on applique la méthode de la fausse position entre α_n et 2, on obtient comme approximation de $\alpha_{n+1} \approx \frac{2 + \alpha_n}{2}$ (voir le parallélogramme). Par convexité cette approximation est par défaut.



En pratique on calcule les $(\alpha_n)_n$ de proche en proche en opérant de la manière suivante. Ayant calculé α_n , on applique la méthode de Newton à la fonction $\varphi(x) = x^n(x-2) + 1$ en partant de la valeur $1 + \frac{\alpha_n}{2}$, on en déduit alors α_{n+1} .