

Le cercle de Monge

Fiche élève

TS

Auteur : Pierre Lapôtre

Dans le plan rapporté à un repère orthonormal $(O; \vec{\imath}, \vec{\jmath})$, on considère la courbe \mathscr{F} représentative de la fonction f définie sur [-4,4] par $f(x)=\frac{3}{4}\sqrt{16-x^2}$.

Soit M_0 et M_1 deux points de \mathscr{F} d'abscisses respectives x_0 et x_1 vérifiant :

$$-4 < x_0 < 0 \text{ et } 0 < x_1 < 4$$

On note T_0 la tangente à \mathscr{F} en M_0 , T_1 la tangente à \mathscr{F} en M_1 . T_0 et T_1 sont sécantes en P.

1. À l'aide d'un logiciel de géométrie dynamique, construire une figure correspondant à cette description. Déplacer le point M_0 ou le point M_1 de sorte que T_0 et T_1 soient perpendiculaires. Envisager plusieurs positions de M_0 et de M_1 permettant de réaliser cette condition. (on pourra afficher la mesure de l'angle $\widehat{M_0PM_1}$ et éventuellement modifier les paramètres de déplacement du point M_0) Émettre une conjecture sur le lieu de P lorsque x_0 décrit]-4,0[, T_0 et T_1 étant perpendiculaires.

Appeler l'examinateur pour vérification de la figure construite et validation de la conjecture émise.

Pour la suite, on pourra utiliser un logiciel de calcul formel.

- 2. Donner le coefficient directeur m de T_0 en fonction de x_0 . Comparer les signes de x_0 et de m.
- 3. On fixe m.

Trouver alors l'abscisse x_0 du point de contact de la tangente à \mathscr{F} en fonction du coefficient directeur m.

En déduire que cette tangente a pour équation : $y = mx + \sqrt{16m^2 + 9}$.

Appeler l'examinateur pour vérification.

4. On considère un point P de coordonnées (x_2,y_2) vérifiant :

(i)
$$(|x_2| < 4 \text{ et } f(x_2) < y_2)$$

a. Montrer que si une droite de coefficient directeur m passant par P est tangente à $\mathscr F$ alors m est solution de

(E)
$$m^2(x_2^2 - 16) - 2mx_2y_2 - 9 + y_2^2 = 0.$$

- **b.** Montrer que cette équation possède deux solutions lorsque la conditions (i) est réalisée. Lorsque (i) est réalisée, on peut donc mener de P deux tangentes à \mathscr{F} .
- c. Sur quelle ligne se situe le point P lorsque le produit des solutions de l'équation (E) est égal à -1? Interpréter.

Production écrite: rédaction complète des questions 2, 3 et 4.

Commentaire : si on trace le symétrique \mathscr{G} de \mathscr{F} par rapport à l'axe des abscisses, on obtient une courbe fermée, réunion de \mathscr{F} et de \mathscr{G} appelée *ellipse*. On démontre que l'ensemble des points du plan d'où l'on peut mener deux tangentes perpendiculaires à l'ellipse est un cercle, appelé cercle de Monge de l'ellipse, dont nous venons de trouver un arc.